Яндекс: CatBoost

Продукт
Разработчики: Яндекс (Yandex)
Дата премьеры системы: 2017/07/18
Технологии: Средства разработки приложений

CatBoost - метод машинного обучения.

18 июля 2017 года компания Яндекс сообщила о создании метода машинного обучения CatBoost. Он предназначен для обучения моделей на разнородных данных.

В основу берутся сведения о местонахождении пользователя, история операций и тип устройства. Библиотека машинного обучения CatBoost опубликована в открытом доступе, её могут использовать все желающие.

CatBoost заявлена, как наследник метода машинного обучения Матрикcнет - он применяется почти во всех сервисах Яндекса. Как и Матрикснет, CatBoost использует механизм градиентного бустинга (англ. boosting - улучшение): он подходит для работы с разнородными данными.

CatBoost учитывает модели числовых и нечисловых данных - виды облаков или типы зданий. Прежде эти данные переводились на язык цифр, и это могло поменять их суть, повлиять на точность работы модели. Теперь их можно использовать в первоначальном виде. Это помогает CatBoost демонстрировать повышенное качество обучения. Его можно применять в разных сферах - от банковской до производственной.

«
Яндекс много лет занимается машинным обучением, и CatBoost создавали лучшие специалисты в этой области. Выкладывая библиотеку CatBoost в открытый доступ, мы хотим внести свой вклад в развитие машинного обучения. Надо сказать, что CatBoost — российский метод машинного обучения, который стал доступен в open sourсe. Надеемся, что сообщество специалистов оценит его по достоинству и поможет сделать ещё лучше.

Михаил Биленко, руководитель управления машинного интеллекта и исследований Яндекса
»

Метод протестирован на сервисах Яндекса. В рамках эксперимента он применялся для улучшения результатов поиска, ранжирования ленты рекомендаций Яндекс.Дзен и для расчёта прогноза погоды в технологии Метеум. В дальнейшем CatBoost будет работать и на других сервисах. Его использует команда Yandex Data Factory — в своих решениях для промышленности, в частности для оптимизации расхода сырья и предсказания дефектов. Европейский центр ядерных исследований (ЦЕРН) внедрил CatBoost: центр использует продукт для объединения данных, полученных с разных частей детектора LHCb.28 мая министр цифрового развития Максут Шадаев выступит на TAdviser SummIT 8.7 т

Для работы с CatBoost достаточно установить его на компьютер. Библиотека поддерживает операционные системы Linux, Windows и macOS и доступна на языках программирования Python и R.

Загрузка CatBoost доступна на GitHub.

Робототехника







Подрядчики-лидеры по количеству проектов

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Солар (ранее Ростелеком-Солар) (44)
  Финансовые Информационные Системы (ФИС, FIS, Финсофт) (15)
  Форсайт (11)
  Бипиум (Bpium) (10)
  Синимекс (Cinimex) (9)
  Другие (373)

  Солар (ранее Ростелеком-Солар) (8)
  Финансовые Информационные Системы (ФИС, FIS, Финсофт) (4)
  Консом групп, Konsom Group (КонсОМ СКС) (2)
  IFellow (АйФэлл) (2)
  ЛАНИТ - Би Пи Эм (Lanit BPM) (2)
  Другие (30)

  Солар (ранее Ростелеком-Солар) (10)
  Форсайт (3)
  Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (3)
  КРИТ (KRIT) (2)
  Cloud.ru (Облачные технологии) ранее SberCloud (2)
  Другие (13)

  Солар (ранее Ростелеком-Солар) (6)
  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (4)
  Unlimited Production (Анлимитед Продакшен) (4)
  РЖД-Технологии (3)
  Robin (Робин) (3)
  Другие (21)

  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1)
  Нота (Холдинг Т1) (1)
  Солар (ранее Ростелеком-Солар) (1)
  Другие (1)

Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Microsoft (41, 47)
  Солар (ранее Ростелеком-Солар) (2, 46)
  Oracle (49, 26)
  Hyperledger (Open Ledger Project) (1, 23)
  IBM (33, 18)
  Другие (556, 278)

  Солар (ранее Ростелеком-Солар) (1, 8)
  Финансовые Информационные Системы (ФИС, FIS, Финсофт) (1, 4)
  Microsoft (4, 3)
  Oracle (2, 3)
  SAP SE (2, 2)
  Другие (16, 19)

  Солар (ранее Ростелеком-Солар) (1, 11)
  Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (1, 3)
  Форсайт (1, 3)
  Cloud.ru (Облачные технологии) ранее SberCloud (1, 2)
  Сбербанк (1, 2)
  Другие (9, 9)

  Unlimited Production (Анлимитед Продакшен) (1, 6)
  Солар (ранее Ростелеком-Солар) (1, 6)
  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 4)
  Мобильные ТелеСистемы (МТС) (1, 4)
  Robin (Робин) (1, 3)
  Другие (10, 18)

  Мобильные ТелеСистемы (МТС) (2, 2)
  Солар (ранее Ростелеком-Солар) (1, 1)
  Т1 Консалтинг (Т1 Инновации) (1, 1)
  T1 Digital (Т1 Диджитал) (1, 1)
  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 1)
  Другие (1, 1)

Распределение систем по количеству проектов, не включая партнерские решения

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Solar appScreener (ранее Solar inCode) - 46
  Hyperledger Fabric - 23
  Windows Azure - 20
  FIS Platform - 15
  Форсайт. Мобильная платформа (ранее HyperHive) - 12
  Другие 307

  Solar appScreener (ранее Solar inCode) - 8
  FIS Platform - 4
  Siemens Xcelerator - 2
  Парадокс: MES Builder - 2
  Турбо X - 2
  Другие 22

  Solar appScreener (ранее Solar inCode) - 11
  Форсайт. Мобильная платформа (ранее HyperHive) - 3
  BSS Digital2Go - 3
  Cloud ML Space - 2
  Nexign Microservices Framework - 1
  Другие 8

  Solar appScreener (ранее Solar inCode) - 6
  EXpress Защищенный корпоративный мессенджер - 6
  МТС Exolve - 4
  Форсайт. Мобильная платформа (ранее HyperHive) - 3
  РЖД и Робин: Облачная фабрика программных роботов - 3
  Другие 12

  МТС Exolve - 1
  Т1: Сфера Платформа производства ПО - 1
  Solar appScreener (ранее Solar inCode) - 1
  МТС: Ocean Облачная платформа - 1
  Другие 0